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boggebdm Lo®yzgdo: godmogmomo gobmdnbozmemgos, dHsgsemo
2379605996890 LobTdomol sdmi36mds, 3s6dmbomemo 0bdgMm3scmgdo, Jo-
B IHsgocmbdosbmds, LosEgogm smmombsbsfgmgdo

Jgbogoemo

Joommo 3Msgombdosbo Lodmgks bsbosmwgds b3gdol Momymo 3m-
MM 0b5300005 © 3gOEG0ISMNO0 MM0gbBo300m, Mabai dgEboghgdo
Lonanbgdy dg@os 033ma396 o smfghgb (ApakmmBmim 1905, Nadel
1933; sbmdadg 1957; gmbmbgmodg 1988; Uxnkeanse 1964; sbemsbodgommo

*

33mmg3s gobbmMogmes Imms Brbomseggmob Lagotromggmmlb gemazbamo Lodgisbo-
9™ gmbrol Ibstreggeom (SRNSFG FR-21-2066).
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1954 o Lbg.). ©mgdwmg sd@nosmntos obznbos Mggombam GGowo-
309330 (bgobgm3o, gyM05T0, 3obgmbs s Lbgs 3MmbggdBo) dagomes-
Tymdal, 0b@ghgomado s39dmmadobs s dobo Bomdob Lsgzombgdmsb
05353806 gd0m (s6s94oBzommo 1950; g dgzsbodg 1992, 398s30dg, Tatg-
ogmo 2014; Mzhavanadze and Scherbaum 2020; Scherbaum and Miiller
2023; Scherbaum at al. 2022). dmmm @MO™m3eg, RsbsFgmgdol 3me3nbol
3oL3Bodol 53mLEOgNE0 Sbosmobdo 39ME0ZomME 0bGgegomgddg gy-
Obmdmms 96 gomagnmo bdob FO (doomswo LobBotggdal) sbm@s-
3090L (3og., sM@gd gt gmdsndzommal bdmgsbo Robsfgegdo; Scherbaum,
Miiller and Rosenzweig 2017), o6 RsFgéol b3gEosmodgdymm 3gommgdl,
OmamMoEss, dsgomomse, bmMbol doghmeumbgdo (Scherbaum 2016).
63s sbogmob ¢obemgbo domFgzgdo ghmetbosb Loggmg dobomgddo
36og35mb3osbo RobofgMol mommgmmo bdolb daghsms LobBocggdals
0009680530306 9d0L  LsFMomadal odmggs (Bittner et al. 2017; Cuesta,
McFee and Gémez 2020), 653 3oL3Bodam6H 3mcm3nmbgdTo s obEmEoym
3mm9d309030 3o6mBmboymo 0@ gezomadol 3odmygbgdol Fgbfegmols
sboem Fgbodmgdemmdgdl ggodmagl.

§0653gd56g 33tmggs bofomos 3Gmgd@ols ,Jotmmmo @Mswoaso-
memo 3nbogol 96smobols s dmmgmomgdols 3m33oynd gt mmo Lob@gds
bostrdogm Loggmyg Bobofamgddg woytmbmdom” (SRNSEG FR-21-2066),
6 mIgmog Jodbsw obobogb godnBogmb Lobi@gdgdo Ihsgsmo-FO powag-
bobs o IMsgombdosbo gmgasmydo 3mMH3nbgdol IgbogsmyMo obgm-
3do(300L 3dmmgdol (MIR) 3g00mgddg onndbgdnmo sbsmodabmgobl.

B39b0 33mggs LEdIM0sbos. 30639 B0a30, R3gb 3o3mToggdom mdo-
mobob bobgmdFogm 3mblgtHge@mmools Bmm zmmEol modmEms@mtools
36 J0300056 5mgdnm 3MEIMm, 3gMaMIRoNme® INS3smBgMmzsb bo-
3030 ®anxgdl s 3Jdboo FobsbFsto @sdnTsggdol 3Hmsgoncmm
Robofg69dL Lgadgb@oEoobmgol, Bom@®mazoobs ©s LEbostMGodsoso-
obogol. Jgdga 303900900 INME0BNbsdgbGmeo LobBomols (multi-F0)
SmamMom3ol 583@06Mgdsl s gofmmgbols dhsgombdosbo Bsbsfgtg-
dobogol s moom Rsbsfghdg 393969600 gdm 3seImbogmo 0bdg-
35mgdol aobsfomgdgdl (39689330 3mbgzg®m@omgdobs s bathggmmo
dmegmotgdol Ladysmagdoo (Scherbaum, Miiller and Rosenzweig 2017;
Rosenzweig, Scherbaum and Miiller 2019). dmemb 3o, o3 gobsfomgdg-
30056 3gdbom dmmosbo 3mB3NLol asdmbobymgdsl, Lowsi dmbscsg-
3930 a53mbsbnmos sdsmo gs6dmIomgdol LogezgBo (PCA s UMAP
3g0mEgdom), 3oagbo LEOHNIENML HDBSCAN-ob 'asdmygbgdoom,
boomm godmygsebomo ©dsmasbbdmdomagdosbo godmbobymmgdgdols dmbo-
3Mmma0n® do00gdnmmdsL 398mf3gdo o3 godmbobmmgdgdom Ggao-

1 HDBSCAN — ogtstrgope Lodgoommgzgdg ©oxyndbgdnmo 3mab@gmodsioal
semgmBomdo, HmImol dg839mdomss bogds bbgswmsobbgs Lodzgtogol LEsdomneo
3mobi@gtgdol godmgmgbs.
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@6amo 390360980l s RsbaFatob gotmol Bmdmol 3hmabmbomgdols
989d& MMl arggboo.

33m330L 368 3gJbEo s Fobsdommdgde

90bmIgbogmmmaon®o 33mg39d0 sLoboglb wbogsmym ggM@ogse-
ma sBOMZbgdsLbe o 0bGghgomne Fgagbommdsl Ladstrmzggmml
Lbgoabbgs €gaombBo. gsbLogmmtgdom gsdmatBgzgb 3350 gdal,
33068 9d0l, bgodHomneo &geogdobs s md@oggdol Mdmml s obgm
3NOGMOms 13930803060 Mebbdmgsabgdsl, Hmamtoiss 9.§. ,g6m-
369mo Mogdmmo” 1-4-5 (86903300 1950; Nadel 1933; gmbmbgemoadg
1988; sbemsboBgomo 1954). asd3mmgmomo 3393900l sMgmm g8o3dy,
Bmbosmno mMgsbodszool 33emgg0l Bodbom, godmoygbgdmms domamo
batrobbob LEMogMo Rsbsfgigdo o6 0boogonsmumo bIgdol Rsbs-
Poatgdo (Scherbaum, Miiller and Rosenzweig 2017; Scherbaum et al. 2021,
2022). bgsbyMo LodmgMgdol Bgbobgd Bggbds Fobs 33emgged shggbs, M3
Lostrgdogm s9omBobomgdowsb Ihsgemo-FO godmmgmes bgmb «Fymals
068 9M35mnE0 35boFomgdols sbsmodlLs s Rsbsfgmgdol 3mab@gthods-
305L (Shugliashvili et al. 2024). s0boBbmmo 33mazs 3sbdbmaswgdammos
f0b03gds6g 65860m3T0, Hodwgborsi 0go 98379dbgds gmgbammo dsb-
BBod0lL RoboFghgdol matrm ghigm 3mM3nbl s 99005693l mobe-
dgMmgg Mg36gdgb@oiogdol gbFogmoalb s seredgosdbgrozgmmdomo
BgbPogemol Bgmmmgdl.

odomobolb bobgmdFoxzm 3mbLgHZs@MM00l FmmImmeols modm-
oGmMool segogo Bgoiaglb Lagdbdgwoiom dobmmgdols 200-dg 398 doa-
bo@mxroml, HmImagdoi RsFgtomos 1948-1973 {rmgdBo. domosbmdsBo
JHmbmdg@Hogo 9mgde@gds 130 Losol, G™Imol ssbemmagdom bsdo
3gmobgoo g3masmnmo 39bogss. BoMIBO Meg30MIIMO© 3SEORMY-
dmmo ogm g WAV gsomgds, Mmdmob omzgnmo bgdiogdo 9g-
Lodsdobo ot 3gtgdom oym dmboBbmemo. Rggh s3@mIs@neow godiogm
b 36533968 gd0 0bogomsmne RsbsFatgderm agsbsmantgom (3sg.,
»57-9-alilo.wav’) s sgncmgo dgbodsdobo bgmdobsfgomdo dg@sdmbe-
3999%0 (930mbo, 930, ®aMNB0, NSM0M0). bozgmazo dobowsb godmg-
MoEbgom 0bLE®N3gbE Mo bofoerdmgdgda, Imbmamboyto Rsbsfghgdo,
stodoomo Hg39mGnoto, BMoadgbdnmo Joboms s RsbsfgMgdo
6 930mbnemo 3mmgbomgdol 3o693g. 3gmaggobmgol BgdBgmmo sthg-
Boemo doboms Imoagh 2,107 Ihsgombdosh gmzgsmaem Robsfgtl 18 tg-
30mb0osb. gb 3obBGodo 0bsthmbgdl Mgaombnem dMogomeagtmgbgdsl
©5 3mM3nbol embob bEs@obEo3olb Jgacrmggdol Loysmgdsl odmggs.
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dgomegdo
dmegmob gsbbomgs

B39b 3099693 303560869d3mmmdsDg oYM bmdom stdo@®gd@neab,
cmIgmoi 9nndbgds DeepSalience s Polyvocals bob@gdgdl (Bittner et al.
2017; Cuesta, McFee, Gomez 2020), 05 3530353900 harmonic constant-Q
306m0ddbsl  (HCQT) godo-moxghgbiosmaé  dobsboscmgdmgdomsb
9hmo®, Homs dogommom Mm-bobJotmol d0dsb03bgdmmdols B9y3s S[t,f],
mdgemoi Fomdmahgbl t @MmL semdscmmdal, Hm3 bLobBotyg f aogmghg-
dmemo Gmbol doomswo bobBotgs.

f0bo3gdetg 6oFOrmMmIdg 08 geohgdom, LGobosOEMmo VGG-bEo-
ol CNN 3mm3gdlb 3obs33mgdom g6hmdsbgmdy ofymdomo U-Net-ob
&030b ImMmadom, Moms go351m3xmMIgLbmm 3Moz35mIsbd@odosbo 3m-
689J4LE0L ghmosbo smdds. sdbdstrg 303806 gd0 (residual connections)
dONMb3gmymal Immnmol aof3embol LGedomnemdsl; agosbo Tg-
Ofyds 3o 99605698l 533mo@Mols s Bobol IGmgdlL Lodmmmm
36mabmdotgdol msgol domgdsdwg.

361535em0-F0 53m336md0 3megmol gof300bsl gbogothmgds oo
Momgbmdol 0bngommsmy@-s6mbgdosbo smoom dsbsms. nboogoy-
SeM-56bgdosbo IMogombdosbo BsbsfFgemgdols LodFotols godm, Bggb
3J3bom bgmmgba®ow IMozombdosh 60dndgdl, dmbmumba®o Rsobs-
atgd0b Lodnmomgdnm mmsb3o Imgisgzolb Pyroomacoustics-ob Lodey-
omgdoo (Scheibler, Bezzam and Dokmani¢ 2018). Robsfgeroms xs3gd0l
9853000 M9g396dgMs300lL boigmae, mommgmmo 3ol 30O GNsmu®
mob3o gobmogligds Mxdm dg@ow gdbasgbgds ghm3ozmmarmbost Lo-
9db3g00m RoboFggdl. mos dmbszgdmes boghgdgdol bbgosbbgs dm-
boygzmbog®o BsbsfgMowsb Bgddbommo glgzemdtmegsmbdnsbo RsbsFatg-
3ol gots, Fammbs sbgzg 09gbgdl Polyvocal-do sdsdwg g9dmygbgdamo
361535emb30sbo Imbozgdgdol mos baghgdms 3madobszosls s GVM
3m63qbol Jotoymmo Bobomgdowsb smgdnmo Fgdbmymnmo Homog-
bmdol 6039 3g3L Lol gdol Jotromymm Rsbsfgemgddy sed3@ o300l dobbom
(Cuesta, McFee and Gomez 2020; Scherbaum 2016).

0360060l Jgdga, dmogmlb g30ygbgdom Aggbl LsdoBdby 3mO3ML3o
o6LgdMmo Rsbsfgegdosb IMHogomo-FO obgm&dsool s3mbomgdsc.
gmggmo Rsbofgeowsb 300980 3035603693mmdal G935, GmIgmogs
gmggmo ©mmol dmbszggmBo shggbgdl RobsfgthBo sMbgdmmo bIgdol
R96s396@ 96 LobTocggdl. s30b Fgdga 3oEbogm SbmIsmone m3o-
nMbmdgdl (LobBomggdl <1003(3 s >30003(3) s 335LMsb ghmawe go-
9496900 53308 9Lob g5dsm35mobFobgdgm Fom@®L, Hm3gmoi Moboglh
RoboFg®Bo b3gdol LoBmsemm LobBotgdg g Mm@ ogodg Jg&0c sBm-
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693 Lob3oeggdl. sdob Fg3cga, FO-gdL gogsthddboom (396@9ds Al
=55 33-b d0dotrm s goehgzm Ibmemme LBsdomy® Lgadgb@gdl Lob-
Botob @Mogd@mE0ol bsdomamdmdal bomdal 3993gmdom (Rosenzweig,
Scherbaum and Miiller 2019).

ooomgamo Rsbofgmol ymggm Mmolb dmbs3gzgmBo, godmgoom-
3mom gymggm 096308gztrmm 39MG03omae 0bdghgemlb bs3mgbo
F0-93000056 (358.: &m0l 3mbozggmdo dm3gemBoi agbwgds FO-9d0 [1400
39580, 1650 39680, 1750 396@0] Al-0sb dodstrmgdoom, 3omzmom 0b@g-
gomgdl [250 (396@0, 100 (396@0]); BoboFghBo 53 bgtboom sdmmgdmm
39608 035mNe 068 9H35mgdl gomsoglgdm o3 RsbsfgMols g3ge@ozsmnto
0b@9tM35madol bs3em9ddo. FgMmdeymdol dgmmmmemmanaol Fgbodsdobsow
(Scherbaum, Miiller and Rosenzweig 2017), 6536g30b smmdsmmdols bodzg-
6030L BMbJ300L IMmEgmoMgdsl 3o3gmgdom dotmgmmo Lodgoemgal
Bgxnsbgdol dgomemol 3983gmdom (KDE - kernel density estimation) oo
oagbomo 3Mbd300006 gomgdm gedmEbgnmo IfFzgezomagdol Mo-
mgbmdsl. 5dob Fgdrgga, 6ozt gdl gotagdor aonbolb botrgzol dmogml
(GMM - Guassian Mixture Model), &m3dgmBo 3m33mbgb@gdol Momwg-
bmdsl gmmobodigdor 3[39Mzomgdol Bommgbmdsl; 3m33mbgbdgdal
LoFgomm 360Tgbgemmdgdo Jdbol RoboFgtol 36033bgmmgabo 0b@gtgs-
mgdob Fgdoggedgdgem bbb, bomemm botrggol LodzgMogol gnbdioonl dg-
B39mBom 30gdm NPY39E0 SmdSMmMmd0L dmmgmU. bLsdmmmme, gsdmm-
3momo bstggol bLod 33603080 200 MSbsdGSE sTMmEMgdnmo (396@NMHo
3mbo(300056 300gdc 3609369mmdgdL, Bodbotgdmmo boghdob ggd@&m-
6ol dobomgdse, GmIgmoi aodmoygbgds dgdamdo sbsmobobsmgols
(Scherbaum, Miiller and Rosenzweig 2017; Shugliashvili et al. 2024).

0305306039 35390 gdm doMomseo 3m33mbgb@gdol sbomadl
(PCA), 65005 08350806mm dmbs(393980L FEx030 LEONIGNGS ©s ©L-
396bool sbLbsmds. Fgrogasw: dmbs(zgdgdol 3oggmo mEo 3mI3m-
696&0 509l 3emamdol 19%-b , bmem 3otggmo 25-90%-6 (bbgs
Lo®y39d0m, 33069 MOMEgbmMmdol 3mI3MbabBgdos 30 sLobogl dmbscsg-
3980l dohomo aoblbgaggdgdl). strsfmango ggmdg@®ool godmbogemg-
bo 304gbgdom UMAP*b 2 o 25 356bmdomgdsBo (Mclnnes et al. 2018).

2 UMAP — g6mggs60 smgmtomdo dmbsgdms 8g3nddnmo (odsmasbdmdomgdo-
560) go3mbobnmgdol gbogddbgmae, HmIgmBai FgbstBmbgdmmos domo LGGNI-

&no.

3odmbo 17, 2025 11
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PCA 3m33mbgb@gdol thommogbmds ©0ob3geboolb sbbboemo 3BHM3mE 300
2 19%
3 27%
5 40%
10 62%
20 85%
25 90%

gbGomo 1: 3s6dmbommo 0b@gtgomagdals asbsfomgdgdl (200-gmgdgb@osb GMM
3998mM3gdL) FmEob ©ob3gMbool sbbbsmds PCA-b 3m33mbgb@gdol dogé

B39b LEONIGNOS 350806900 HDBSCAN-0b a53mygbgdoom 2-D
UMAP R539b69393%g, 60l Bgmgasms dogomgom 105 3emsb@gto, Hmdgem-
00356 648 grmgdgb@o s 3oMgdamos, Hmamtz bIsnMo (o3l g-
69d9mo) (McInnes, Healy and Astels 2017).

030bmdM0g0 BgbFogmobmgol, Rggb 3gdbom 3molidgememo dobBEs-
3900l Lobm3Gozne asdmbobymgdgdl; sdobsmgol, msgmedotggmaw
35dma39a3L aonbol batrgzol dmwgmo (GMM) mommganmo 3emsb@gmol
3996000056930 068 gMH35mgdol bsghgdobmgol. dsgsmomsw, ghmo
3mab@gho, GmIgmBoi ancamo Lodmghgdol RsbsFgcgdo FocdmAL,
53mgbl 30398L 188, 297, 353, 464 05 694 (39680L BoMamgd3o, bmemm
Lbgs 3mob®g®Bo, HM3gmBo FocdMBL Fobyeo Lodmaghgdol Rsbsfg-
6900, 3mobogds 303900 192, 298, 352, 414, 571, 658 s 725 (396@0L Bo-
6amgdo, Loowsbsi Robl, O™ o3 3mob@ghgdh 0b@gtgomo &gh(zos
Loghom 5g3b, s 3obbbgegzads MYBO™ oo 06&gMhgzomadoom.
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LyEomo 1: 306 Imbogzzgmo BsBgbgdal athsx030086, Lows bshggbgdos
R9M0m godmymagomo 33067 3mob@gmo (3msb@Ggto N17) RsobsFghgdobes,
OmIgmms 3s6H3mboymo 068 9Mzomgdal gobsFomgdgdo dbasgbos.

6930mbnemo  0bgm®dszool  godmgmgbol d0bboom, 3o3mF3gdm,
oboboggbh o9 o6s 0bGghgommeo gobsfomgdgdo 3mbidgdmmo Gg-
30mbgdol mogolgdnegdgdl. sdobomgol, hggb godmgoygbgm mEo gds.
30639mo — JmEsmnMo 9&039@gdolb g3oe@ebs: mommgnem Robsfgml
9boggds 3o HDBSCAN 3moli@géBo yggmodg b3oto Ggaombols g@o-
3980; 33 dgormEom ©s3brmgdom 33%-0sbo LodNLE M bogds Asbsfg-
6oL 98039806 gds 18 Mgaombol Botamgddo. Igmeg — 3mb@Ommotg-
330 3mabogogsgos: 80/20 @oymaxzom (3mbsigdms 3gdmbggzommdals
3606303000 sORgnmo 80%-0b F30mbobogol, s®hgbomo 20%-0b @&g-
LEMgdLmgol) 3F30mboo 100 bobgsh Bgdast Fgdmbggzom &yggdl
(random forest) o gEEOMMdm Mgaombol 3Mmabmbomgdsl PCA2D,
UMAP2D, PCA25D 05 UMAP25D Rs89b989d0b bLogmdzgmdy, Homs os-
350030bmm, 09 H3gbs 0bsMAMBadlL gl Robostrmgdo 535 ¢ 03 Robs-
9630 Bga0mbym 0o30L9d9M9d93dg 0bxzmETs300l. 53 ogsmgdsdo,
UMAP25D 00§93L 40%-006 Lobommdsl, msbsdstro bLodab@oo s Lgb-
Lo@onOmdom ssbemmgdom 0.4-msb.

3owdmbo 17, 2025 13
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Jd9egagdo

UMAP2D g53mbobymgdgddg HDBSCAN-ob 39839mdom godmoym
105 3emob@go; 648 Bsbsfgho 3gtrgho 3mob@ghdo 3gé dmbgws. mo-
0mgamo 3mab@gmobmzgol asbolsdmgms: o) Bsbsfgegdol dmmomamto
6ga0mbo s 3) GMM-ob 3m33mbgb@gdol LoBmsmmm 360Bzbgmmdgdo.
qb 360836gmmdgdo dogomgom mab@geol Robsfgegdol Jstrdmbommo
068 9M35mgdol g5bsFomgdosb bgmasbsmo 60dy3gdols Fgddbols o
GMM-0b 530086 Iméggdol adbom. Jgmgasw dogomgo bLobmdgosnéo
35dmbsbemgds, HmIgmog sh39b90L, B 030l 0b@ghgemgdo a3bzogds
33 3mabBgcol Robof gt gddo.

3mabBghamo sbomodol Fgwgagddy godpomado wo3306h39ds
3boymaL, Hm3 Jsm3mboymo 0b@ghgomgdol 3basgbo LEGONIGNEOI-
30l 3gmbg Bsbsfgemgdo dotronmsz ghom 3molidgigddo 56056 gobmogly-
dmo.

dogomoma, 3mabdgho 20 (107 RsbsFgto; dmmomamo Mgaombo:
a960s; dmesmnmo BoMol 0bogdbo: 70) godmotdhggs osbemmagdom
188-,297-, 353-, 464- 05 694-(396@0560 068 ge35mgdom. 530l Lodotabdo-
O, 3msb@geo 28 (46 Rsbofgho; Immamnto Mgagombo: 3obgmo; Imws-
o Bocolb 0bogdbo: 151) Igoogl 192-, 298-, 352-, 414-, 571-, 658- s
725-(39680056 068 g6z5mgdl. 3069 06@9ezomgdo gdmbzgzs 3mab@gto
20-0bsb, 3ogtod gobbbgoggdgdo mgombohobms bgimbosbdg wowo 0b@g-
6gomagdol JgdmbgggsTo.

g@omaco Imbs(3939d0 — 06@gezomadol Lobm3@oznto dob-
BBod9%0, dm@smyMo hgaombgdo s Bocgdol 0brogdlgdo, sgMgmag
LMo Rsgbgdol atexmnzo — bgmdobsfgomdos B3zgbl dsds30: https://
github.com/Ishug/pypolyphonicanalysis_data/tree/main/KADMOS2025.
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Harmonic interval distribution (average of estimated Gaussian Mixtures)
cluster_20 (107): ["106-1-biba", "113-3-mravalj'amieri", "116-17-simg'era arakh'ze", "124-9-nana", "131-1-khelkhvavi",
"141-16-supruli", "142-17-kh'vemouri mak'ruli", "143-11-mravaldzalsa da skhvavashi", "145-15-buba", "148-05-supris

khelkhvavi", "156-05-aidila", "156...]

0.025

0.020

Density

700 800 900 1000 1100

100 200 300 400
Values

Harmonic interval distribution (average of estimated Gaussian Mixtures)
cluster_28 (46): ['116-33-nana", "117-4-mg'era", "128-16-urmistauli", "128-5-oka (mkis simd'era)", "142-08-bat'onebo",
"14a-14-alilo", "14b-5-gmerto,gmerto", "14b-7-mravaldjamier", "150-06-tokhnuri", "150-07-mumli mukhasa", "150-13-nana",

"150-16-iavnana sakhadisa", ...]

700 800

300 400 500 600
Values

100 200

LeGomo 2-3: 28-9 s 3g9-20 3msb@giBo Fgdsgsmo BsbsFamgdol Jstdmbomemo
06@gezsmgdol gobsFomgdgdol ghmdsbgmdg momoggdmmo gMexnzgdo.
Toomgmo bsbdgdo sbobogl bgmsbms dmtggdmm GMM-gdb.
»-1¢ 3mob®a®Bo Imgdie 648 Robofato, HmImgdoi HDBSCAN-3s
396 30539m3bs 3mb3M9d M kamABL. domo JseImbonmo 0b@gtzgaomy-
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3oL gobofomgds k39698l dmasm &gbogbogdl Lbgewmobbzs gaom-
Bobogol bLogom 0b@gegomgdol 3gmbom, Goi Joymomgdl 3me3nbol
Robofgtgdol gbhrmgget Loghom LEONIENGOSDY, »mMdzs gb LEGNI-
BN 3530mgd0m bogmgd Lob@gdynos, oMy swagbomo 3mab@g-
6 gdo0.

Harmonic interval distribution (average of estimated Gaussian Mixtures)
cluster_-1 (648): ["1-4-shvidkatsa", "1-6-makruli", "10-1-mtibluri", "10-11-alilo", "10-4-heri oga", "100-1-mokle
kakhuri (mr: nier)", "100-10: 10", "100-3-sufruli", "102-09-11-mkis simg'erebi", "102-13-alilo",
"102-4-grdzeli mravaldjamieri", "102-5-sup'rul...]

0.040
0.035

0.030 n

0.025

Lyromo 4: HDBSCAN-ob 3096 @opxanskgdgmo Rsbefamgdol 3s6dmbonmo
068 g635mgdolb gobsfomagdgdall 9603dsbgmdg omeggdymo gsdmbabmmygds,
Losi gmobogds 3mM3nbol JsbBGedom 3s6dmboymo 0b@ghgomgdols
a565F0mgdal LogMom Ggbogbingdo

6 930mbmemo Imbo39dgdol Fobsbfstro 3Brmabmbotgdol LodnL@ol
Bgbogabgdeow, Aggh 3@ 3mobGIMBmo KanBIdL IHMabm-
Botgdobs s RoTgbgdgdol Fgbodmgdmmdgdo. megosdotggmsw, 3g-
30Lfogmago Msdgboe b3otMow gdmbgggs RsbsFTgtol 3mob®g®Bo yzg-
madg bJomo Bgaombo Rsbsfgmol bodwmzom Mgaombl 18 Mgaombowsb.
Bagase 3030090 33%-0560 LodNLEg, Moz 60BbogL, M Rsbsfgcgdol
39bo3g0bomzgal bszdstnbos Bbmemmm 030l 3MmEbs, Hm3gm 3mob@g-
630 Imomagbs HDBSCAN-3s dmgdnmo Rsbsfgto, Moms bfmeowo go-
dmgobmom dobo Fothdmdsgmmdols dgaombo.

530l F93ga Fg3083Lgm, Medgbsm sgd3m megsw heBgbgdadl As-
6ofg60L FomBmdogmmdol Hgaombol 3Bmabmdomgdol ¢Mbstho. Bmba(sg-
3930l 80%-20%-0560 &Mgboba-&ab@ ogmxol bsBnsmgdoom, 100-bosbo
Bgdmbzgz000 Byggdol (random forest) 3msbogkozs@mmgdo gsofzmmbs
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Robofgtol ggmatozonmo tgaombobs ©s kool 0bogdbol gsobbe-
Bdemgholb dJodboom UMAP2D, PCA2D, UMAP25D s PCA25D godmbobeamg-
39%0b bogmdzgmdy. LodabEggdo ImiEgdnmos gzgdmo Fothrdmmagborm
EbGomBo. gobbogmmdgdnmowm godmodhggs mEobnmzmddmbgbdo-
sbo UMAP, 6:m3gem3dsi 39653y dobogo miEbmdo hsbsfatol gaom-
Bob LMo 3mobogoiatgds Fgdombzgzgdol 40%-3o Fgdmm. Hgaombols
36mabmdotgdol domomo LodYLEY ssbENGIdL, HmI domgdmmo 3o-
6Imbogmo 06@gczgomgdols dsbsbosmgdmgdo dgoiegh 360336gmmazsb
3nbogomae s 3NMENONMm 0bxrm®hdsiosh, Mo Lobommdsl sboggdl
B396L godmmgmom dgmmeb.

RoBgbgdol o3 | Lobommds LodnbBg LabboGoymOmds
PCA2D 0.17 0.1 0.1

PCA25D 0.39 0.19 0.2

UMAP2D 0.25 0.15 0.14

UMAP25D 0.4 0.41 0.4

sbMomo 2: BoboFgemgdol Bgzombamo 3nmgbomgdol 3maobogogsool
B9989%0, Jomgdnmo 2-g356dmIomgdosh ©s 25-356bmBomgdosb PCA oo
UMAP Rs8969093%9 0oytrobmdom

asbbomgs

3mabBgcgdol Lobm3@oznco LJgdgdol Momogbmdmogo sbsemodo
53956 gdL sM0bogm bsdgEboghm Mmgombsd&moll Jommmo Ihsgomb-
30560 L9l 3gMGozomMNE0 JMmmMobsoiool Jgbobgd (Nadel 1933;
565403g0mmo 1950; gmbmbgmodg1988; sbmsboB3zomo 1954).

105 HDBSCAN 3mab@gedo, emImgdoi UMAP2D RsBgbgdgdosb
dog0m9m, 103 3msb@gcBo dobodmd ghmo aodmgzzgoomo 0b@ghgsmo
a3bgegds G9hEool Botmamagddo (300-400 (396@0). 100 3mobidg&hdo
a363gds 0b@gtgamo, MmIgmoi Mobrmmzgmgds §dobws 3306@0L (700
396@0); 76 3msb®gMBo agbggds 0b@gtgomo Fdobos 3396ME0L (500
396&0) BoMamgddo s 93 3mob@gMBo — mg@ogs (1200 (39680). gb doh-
39693mgd0 dogmomgdl, HmI GghEngdo ©s 3306890 396ME03SNE0
&9JLENEL LoyMabl FomBmowagbl, bmmm 3350 gdo s mJ@ozgdo
5dgbsdg bozmgdso ¢MboggMbomados.

08 3msbBgcol Lobm3@ozneo Lggds, Mmool Fgztgdol Gomwg-
bmds yzgmoedg owos (n = 107, Imesmuéo Mgaombo: guéos), s3mgbl
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30390, OmMIgmms (396@m™dGM0go Johgzgbgdemagdos: 188, 297, 353, 464, 524,
694, 903 o 1181 (3968930. 030 596005693l domdg IFoeHm ©s 068 gb-
Lon® Gadgonm LEGNIGNONm Mgaombl 33068gdobs ©s md@segzgdals
3m33mbgb@gdom. gb &gbogb09d0 B9qLodsedgds 3otgsw ©m3yMdgbdo-
693 smfgMommdsl 309890 gbiommo 39M&0zsmdo Jstdmboymo
@O0 gOHnmdgdol Bgbobgd (Mzhavanadze and Scherbaum 2020; Scherbaum
and Miller 2023; Scherbaum et al. 2022).

dmEsmamo Mgaombgdol 3mab@gcgdBo gobsfomgdol god@mtgdl
Bmcob, gotos M33ghdnscmobs s Rofgtol Jommdgdobs, 3603369emm-
3560 sgomo LM g Hgaombanm 39mgbomgdsl masgos. 105 3masbdg-
630 3obgmo Foemdmowagbl 31 3msb@g®l (432 Robsfamo), amtos — 14
3mab@gil (240 Rsbofgen), bgsbgmo — 11 3msbGg®mb (139 RsbsFgto) o
Lodgatrgmm — 11 3msb@ghl (138 Robsfgéo).

3306@g%0 395900l momddob yggms s gmeool SdLmmyGamo©
939ms 3mabBgtBo a3b3ads, bmmm &gM0gdol 303930 (300-350 (39-
b0l Botamgddo) 3ogtEgmgdamos gagers Mgaombdo. Roe bgznbrody
mEbsg 3s@ots 0b@ggsmo (188 (396@0), Hm3gmoi asbLsgmmtgdom
0gombohobms gmEool yzgmoedy ow 3mab@g®do, a3bzogds an®ool
3oLGIOMS osbmmgdom bobgzetTo, oydis 3obgmTo gogomagdom
09300000.

UMAP2D-0bs 05 HDBSCAN-0l g53mygbgdom domgdamo 3mobdg-
690 Jdbols sbodg@Honmo &o3ol gobsfomagdsl, Los dgato 3s@ems,
09330 096303g3Mmo gannos (3mab@gcol LoTgsmm dmds 10; 75-g
36Mm3gb&omo 16; dogdbodndo 107) s bszdome oo bIsmMols bszegdo
(»-1% 3emsb®agto, 648 grmgmeo). Jsmomo 3mob@germmo oxrsM3s do-
Moomgdl, O™ 06@gMzgomgdol gsbsFomgdol 39d@mEgdo bsndgomm
d360b dgoerm Lsdgdbmdmmgdl, mndis Logdsme dmdMmamo bIsmMals
RBOM0J(300 SMBSm IMSZomMRIOHMZobo BodGMMgdol bodoglh sbobogl: gd-
L3goEoolb Lbgomabbzs 3mb@gdb@do s3mLG3NE0 (335mgdsmMds, -
a0mbymo 60dbom smdgdmomo H33gm@Mstol 3g@&ghmagbndmds s
©505maobbmIomgdosh Logh(zgdo LodzzMoz9dg onmdbgdmmo 3me-
LEgHMgdol 3MbLYEMZSE0BT0. MMy 3L gMdg LoBmosmmem 9 Lo-
b3 03960 3030l 5OLYdMBS (0535dMbo 4-14) Jommomydl, Gmd Rzgbo
KDE-ob 3039%0L @omgmobs s GMM-bg dmeggdol 36mgonton
Bgbodmgdgmo bogds 360336gmmzsbo 39MGozomauto 0b@ghgomagdol
Fgdbmymemo, 353653 068 gh3mg@otgdomo 3ma3mgd®gdol ogghs;
donmbgosgsm 530y, geHmMIsbgmmsb sbemmlb drgdsty 0b@gMgsmgdo,
3omo LodgoOHmzowsb 3odm3nbsthg, Bgbodmms, Bgodg@em o6 ste-
Logdotoboe ongmb. Jnmosbmdsdo, gl sbsmodo sob@ncgdls hzgbl
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30M0bgm 0z35mbadM0bl: 06&gMzgomgdal LEsGobE0zgs Mmogobmagsw
Bg0(303L INLogomnEsw 360d3bgemmzsb LEGONIGNESL, HM3gmoi dgg-
Loddgds Mrgaombme 9@ sdmbo39dgdL, Bogcmed 83039 ™ML Bgbodmms,
3a6dbmdosthg ogmb Rofgeol 306mdgdobs s MH93goh@netdyg aogmgbols

3gdmbg Bogd@mcgdol dodstrm, Mo omboboe ¢Mbws 0gdbsl dmmgmotg-
dmmo dmdsgom 33emg39330.

©5b3369%0 s Ladmdsgmm sdmzsbgdo

3o35mbdosbo bostrgogm Bsbsfgergdowsb 306 sdot godmmgmomo
3o6Imbogmo 0b6@gtzgomgdol gsbsFomgdomo godmbobammgdgdo Ig-
Logomytoe 3603369mmgab 0bxm®mdsosl Bgozegh. 80ds603bgdmm-
35%g onndbgdmmo 3GMsgsmo-FO asdmmgms, GMM o0b@gMgsmeydo
dmEgmgdo s msbsdgrmmgg dsbogmmonmo LFsgmgdol 3m3dobszos
53mgbl LEGONIGNESL, HmIgmoi Fggbedsdgds Mgaombmem dg@odmbs-
399900 o 9dONB3gmMymAl 3Mabmdomgdols Jgbodmgdmmdgdl 18 ¢g-
30mb3o0 Logdomm Fosmaemo LodyLGo.

dmdsgomo dodotrommgdgdo dmoiogh: 1) moomgnm Rsbsfgédo
068 9gM35mgdol 3096 3393cmmdal 33568 05830d0300L; 2) 396G 03smyMo
5 3mE0dmbGomado (Igmmwon®on) LEONIGNMOL ghomdmog Im-
©gmotgdsl; 3) bbgomolbgs 3m&3mbol Bgoetgdsls s HmBo dggts-
o ymdolb 35653986 9d0L (33mmomgdol sbsmodl; 4) autm 3hEgm o
06ds INbogmmmaon® 06@ghdmg@oiosl Mgaombamo gdu3gm@gdal
Rororgmmdom s L3zsbgmdg Bmanbomgdnmo 33maggol godme-goxs-
omgdsb (Shugliashvili et al. 2024; Scherbaum, Miiller and Rosenzweig 2017;
Scherbaum at al. 2022; Scherbaum and Miller 2023).

3500mmds

f0b03gdothg 33ma3zs gsbbmMzogmems Bmms GNbmseggmoal boge-
Oonggmmb ghmzgbymo bodgisboghm gmbool bstrsggdom (SRNSFG
FR-21-2066). 3oemmdsl 3mbooo Aggbl 3sr@bomtrgdls s mdomoabol
LobgmdFogm 3mblbggedmEool Bmm3mmMols medmEs@mtosl dsmo

Robsnegdgmo Famomoliomgal.
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Introduction

Georgian polyphonic singing features complex voice coordination and a
vertical orientation that scholars have described for over a century (Nadel 1933;
Akhobadze 1957; Chokhonelidze 2010/1988; Chkhikvadze 2010/1964;
Aslanishvili 2010/1954). Theoretical debates persist around the nature of
tuning and intervallic organization in regional traditions, including Svane-
ti, Guria, Kakheti and others (Apaxumsum 1905; Arakishvili 2010/1950;

*  This research was supported by the Shota Rustaveli National Science Foundation of Georgia

(SRNSFG FR-21-2066).
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Veshapidze and Tsereteli, 2014; Mzhavanadze and Scherbaum 2020; Scherbaum
and Miiller 2023; Scherbaum et al. 2022). Until recently, corpus-scale acoustical
analysis of vertical intervals depended on data with per-voice FO annotations
(e.g., the Erkomaishvili recordings; Scherbaum, Miiller and Rosenzweig 2017)
or specialized capture modalities such as larynx microphones (Scherbaum
2016). Advances in deep learning now enable estimating multi-voice pitch sa-
lience directly from single-channel field recordings (Bittner et al. 2017; Cuesta,
McFee and Gémez 2020), opening new pathways to study harmonic interval
usage at scale and across historical collections.

This study is part of the project “Computational System for Analysis and
Modelling of Georgian Traditional Music Based On Archival Field Record-
ings” (SRNSFG FR-21-2066), aimed at developing systems for multi-FO esti-
mation and music information retrieval (MIR)-based analysis of polyphonic
vocal corpora. Our contribution is threefold. First, we process a large, geo-
graphically diverse subset from the TSC Folklore Laboratory archive and de-
sign a preprocessing pipeline to segment, filter, and standardize recordings.
Second, we adapt and train a multiple fundamental frequency estimator for
polyphonic singing and derive per-recording harmonic interval distributions
via cent-domain processing and mixture modeling (Scherbaum, Miiller and
Rosenzweig 2017; Rosenzweig, Scherbaum and Miiller 2019). Third, we build
corpus-level representations from these distributions, learn low-dimensional
embeddings (PCA, UMAP), discover structure via HDBSCAN, and probe
musicological validity through region prediction tasks and label transfer.

Background

Ethnomusicological accounts document distinctive vertical thinking
and intervallic inventories across Georgian regions, highlighting the roles of
fourths, fifths, neutral thirds, and octaves, as well as culturally specific sonori-
ties such as the so-called 1-4-5 “national trichord” (Arakishvili 2010/1950;
see also discussions in Nadel 1933; Chokhonelidze 2010/1988; Aslanishvili
2010/1954). Computationally, early work leveraged high-quality studio re-
cordings or per-voice captures to study tonal organization (Scherbaum, Miil-
ler and Rosenzweig 2017; Scherbaum et al. 2021; 2022). Our previous study
focusing on Svan songs demonstrated that multi-FO estimation from archival
audio can support distributional analysis of intervals and clustering of record-
ings (Shugliashvili et al. 2024). The present work generalizes these ideas to a
broader national corpus and integrates modern representation learning and
unsupervised discovery.
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The TSC Folklore Laboratory archive comprises more than 200 digitized
expedition tapes recorded between 1948 and 1973, totaling over 130 hours of
audio, roughly three-quarters of which are vocal music. Tapes were initially
digitized as single WAV files with cue markers. We automatically segmented
them into individual items, normalized filenames (e.g., “57-9-alilo.wav”), and
associated available metadata (region, community, group, date). We excluded
instrumentals, monophonic items, non-Georgian repertoire, fragments, and
items lacking regional attribution. The resulting analysis subset contains 2,107
polyphonic vocal recordings from 18 regions. This scale enables corpus-level
statistics while preserving regional diversity.

Methods Model overview

We adopt a salience-based architecture inspired by DeepSalience and
Polyvocals, processing a harmonic constant-Q transform (HCQT) along with
phase-differential features into a time-frequency salience map S[t,f] repre-
senting the probability of a sung pitch at frequency f and time t (Bittner et
al. 2017; Cuesta, McFee and Gémez 2020). Building on prior iterations, we
replace standard VGG-style CNN blocks with stacked U-Net-like modules to
improve multi-scale context aggregation; residual connections stabilize train-
ing; and late fusion combines magnitude and phase branches before the final
prediction head.

Training the model requires a larger quantity of multi-channel record-
ings as the training dataset. To mitigate the scarcity of multitrack choral stems,
we synthesize pseudo-polyphonic mixtures by convolving monophonic stems
with room impulse responses simulated via pyroomacoustics (Scheibler, Bez-
zam and Dokmani¢ 2018). Compared with naive reverberation of sums, per-
source placement in a virtual room better approximates single-microphone
expedition recordings. In addition to pseudo-polyphonic recordings created
from various monophonic recordings from open datasets, training uses a
mixture of open polyphonic datasets previously employed in Polyvocals and
a limited subset from Georgian materials from the GVM corpus for domain
adaptation (Cuesta, McFee and Gémez 2020; Scherbaum 2016).

After training, we use the model to extract multi-FO information of the
recordings in our corpus. For each recording, we obtain a salience map con-
taining, at each point in time, fundamental frequencies of the voices within the
recording at that time. We prune implausible extremes (<100 Hz or >3000 Hz)
and apply an ambitus-aware mask removing components more than one oc-
tave away from the per-recording mean. We then transform FOs to cents with
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respect to Al = 55 Hz, and retain only stable segments using a stability mask
(Rosenzweig, Scherbaum and Miiller 2019).

At each timestep of each recording, we compute all successive vertical in-
tervals among detected FOs (e.g., for timestep with FOs at [1400 cents, 1650
cents, 1750 cents] above Al, we compute intervals [250 cents, 100 cents]),
pooling across time to form a per-recording sample of encountered intervals.
Following Scherbaum’s methodology (Scherbaum, Miiller and Rosenzweig
2017), we estimate the probability density function of the sample with Kernel
Density Estimation and detect the number of prominent peaks. We then fit a
Gaussian mixture model (GMM) with that peak count; the component means
form a synoptic list of salient intervals for the recording, while the mixture
density provides a continuous probability model. Finally, we sample the esti-
mated mixture density at 200 equally spaced cent positions to obtain a fixed-
length vector for downstream analysis (Scherbaum, Miiller and Rosenzweig
2017; Shugliashvili et al. 2024).

We first examine PCA to assess linear structure and variance compression:
the first two components explain 19% of the variance and the first 25 explain
90%. To capture non-linear geometry we apply UMAP in two and twenty-five
dimensions (MclInnes et al. 2018).

Number of PCA components Explained variance proportion
2 19%
3 27%
5 40%
10 62%
20 85%
25 90%

Table 1: explained variance across harmonic interval distributions (200-element
GMM vectors) per number of PCA components

We discover structure using HDBSCAN over the 2-D UMAP embedding,
obtaining 105 clusters, with 648 items labeled as noise (unclustered) (McInnes,
Healy and Astels 2017). For qualitative inspection we compute cluster-level
synoptic scales by refitting a GMM to the pooled intervals of each cluster. As
examples, one Guria-dominant cluster exhibits peaks near 188, 297, 353, 464,
and 694 cents, while a Kakheti-dominant cluster features peaks near 192, 298,
352,414, 571, 658, and 725 cents, echoing shared thirds but diverging in larger
intervals.
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ST

Figure 1: a small section of the embedding plot, showcasing a small color-coded clus-
ter (Cluster 17) of recordings with similar harmonic interval distributions.

To quantify whether interval distributions encode regional informa-
tion, we run two probes. First, modal-label transfer: each recording inherits
the modal region of its HDBSCAN cluster; this yields 33% accuracy over 18
regions. Second, supervised classification: random forests (100 trees) trained
with an 80/20 split predict region (and, separately, tape index) from PCA2D,
UMAP2D, PCA25D, and UMAP25D embeddings. In this task, UMAP25D
achieves 40% accuracy with balanced precision/recall around 0.4.

Results

Clustering UMAP2D representations with HDBSCAN resulted in 105
clusters, with 648 recordings not being placed into any cluster. For each clus-
ter, we identify the modal region of the recordings within the cluster, as well
the means of the components of the GMM obtained through re-sampling from
the harmonic interval distributions of recordings within the sample and refit-
ting a GMM, representing a synoptic view of the harmonic intervals appearing
within the songs in the cluster.

Visual inspection of the results of clustering reveals that distinct groups of
recordings with similar harmonic interval structures are indeed placed within
the same clusters. For example, Cluster 20 (107 recordings, modal region: Gu-
ria, modal tape index: 70) exhibits characteristic intervals at approximately
188,297, 353, 464, and 694 cents; in contrast, Cluster 28 (46 recordings, modal
region: Kakheti, modal tape index: 151) features intervals at 192, 298, 352, 414,
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571, 658, and 725 cents, with smaller intervals matching those of Cluster 20
but with deviations in intervals above the second. Detailed cluster data, includ-
ing the synoptic interval scales, modal regions and tape indices, as well as the
full embedding plot, are available in our repository (https://github.com/Ishug/
pypolyphonicanalysis_data/tree/main/KADMOS2025).

Harmonic interval distribution (average of estimated Gaussian Mixtures)
", "116-17-simg'era arakh'ze", "124-9-nana", "131-1-khelkhvavi",

cluster_20 (107): ['106-1-biba", "113-3-mravalj'amieri",
3-11-mravaldzalsa da skhvavashi”, "145-15-buba", "148-05-supris

"141-16-supruli”, "142-17-kh'vemouri mak'ruli",
khelkhvavi", "156-05-aidila", "156...]

0.025

0.020

Density

200 300 400 500 600 700 800 900 1000 1100
Values

Harmonic interval distribution (average of estimated Gaussian Mixtures)
cluster_28 (46): ["116-33-nana", "117-4-mg'era", "128-16-urmistauli", "128-5-oka (mkis simd'era)", "142-08-bat'onebo",
"14a-14-alilo", "14b-5-gmerto,gmerto", "14b-7-mravaldjamier", "150-06-tokhnuri", "150-07-mumli mukhasa", "150-13-nana",
"150-16-iavnana sakhadisa", ...]

600 700 800 900 1000 1100
Values

0 100 200 300 400 500

Figure 2-3: Superimposed harmonic interval distributions of recordings in clusters

28 and 20. The red lines represent the refitted cluster GMM.
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The “-1” cluster includes 648 recordings unclustered by HDBSCAN. Their
harmonic interval distributions show global trends in common intervals, sug-
gesting shared structure across the corpus, though less coherent than identi-
fied clusters.

Harmonic interval distribution (average of estimated Gaussian Mixtures)
cluster_-1 (648): ["1-4-shvidkatsa", "1-6-makruli", "10-1-mtibluri", "10-11-alilo", "10-4-heri oga", "100-1-mokle
kakhuri (mravaldzamier)", "100-10-satamasho", "100-3-sufruli", "102-09-11-mkis simg'erebi", "102-13-alilo",
"102-4-grdzeli mravaldjamieri", "102-5-sup'rul...]

0.040

0.035

0.030

0.025

0.015

0 100 200 300 400 500 600 700 800 900 1000 1100
Values

Figure 4: Superimposition of the harmonic interval distributions of the recordings
left unclustered by HDBSCAN, revealing corpus-wide patterns in harmonic interval
distributions

To assess the robustness of our findings, we test the predictive power of
cluster assignments and embeddings. First, we assessed how often the modal
region of a recording’s cluster matches the recording’s true region of origin
across 18 regions, obtaining the accuracy of 33%, meaning that for a third of
the recordings, simply knowing in which cluster HDBSCAN placed the re-
cording is enough to correctly predict the recording’s region of origin.

Following this, we evaluated to what extent the embeddings themselves
held predictive power over the region of origin. Using an 80%-20% train-test
split, random forest classifiers (100 estimators) are trained to predict geo-
graphical regions and tape indices from UMAP2D, PCA2D, UMAP25D, and
PCA25D representations of the recordings. Accuracies are presented in the
table below, with a standout of 25-component UMAP being able to correctly
classify previously unseen recording’s region of origin in 40% of the cases.
High classification accuracy for regional predictions confirms that the extract-
ed harmonic interval features encode meaningful musical and cultural infor-
mation, validating our computational approach.
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Embedding Accuracy Precision Recall
PCA2D 0.17 0.1 0.1
PCA25D 0.39 0.19 0.2
UMAP2D 0.25 0.15 0.14
UMAP25D 0.4 0.41 0.4

Table 2: Results of recording region classification based on 2-dimensional and 25-di-
mensional PCA and UMAP embeddings

Discussion

Quantitative summaries from the cluster-level synoptic scales rein-
force prior accounts of vertical coordination in Georgian multipart singing
(Nadel 1933; Arakishvili 2010/1950; Chokhonelidze 2010/1988; Aslanishvili
2010/1954). Across the 105 HDBSCAN clusters obtained from the UMAP2D
embedding, 103 clusters include at least one prominent mode in the “third re-
gion” (~300-400 cents), 100 include a mode near the perfect fifth (~700 cents),
76 include a mode near the perfect fourth (~500 cents), and 93 include an
octave (~1200 cents). These rates indicate that thirds and fifths are ubiqui-
tous supports in the vertical texture, with fourths and octaves also common
but somewhat less universal. The cluster with the most members (n = 107,
modal region Guria) exhibits a synoptic scale with peaks near ~188, ~297,
~353, ~464, ~524, ~694, ~903, and ~1181 cents, combining dense third-region
structure with strong fifth and octave components—patterns consistent with
well-documented descriptions of preferred vertical relations (Mzhavanadze
and Scherbaum 2020; Scherbaum and Miiller 2023; Scherbaum et al. 2022).

The distribution of modal regions over clusters suggests meaningful re-
gional organization alongside repertoire and session effects. Kakheti accounts
for 31 of 105 clusters (432 recordings), Guria for 14 (240), Svaneti for 11 (139),
and Samegrelo for 11 (138). Fifths appear in nearly every Kakheti cluster and
all Guria clusters, while third-region peaks are widespread across regions. A
lower-second feature near 188 cents. conspicuous in the largest Guria cluster,
occurs in roughly half of Guria clusters but is much rarer in Kakheti.

UMAP2D and HDBSCAN yields a long-tailed partition with many small
but coherent groups (median cluster size 10; 75th percentile 16; maximum
107) and a substantial noise set (648 items in the “-1” cluster). The high clus-
tering coverage indicates that interval-distribution vectors reliably form dense
neighborhoods, but the sizeable noise fraction likely reflects a mixture of fac-
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tors: acoustic variability across expedition contexts, repertoire heterogene-
ity within region labels, and the conservatism of density-based clustering in
low dimensions. The average of nine synoptic peaks per cluster (range 4-14)
suggests that our KDE to peak-count to GMM procedure captures a limited
but interpretable set of salient vertical intervals; nevertheless, closely spaced
modes can be under- or over-split depending on local density. Together, these
observations support our earlier claims: interval statistics alone encode musi-
cally meaningful structure aligned with regional metadata, while potentially
remaining sensitive to session- and repertoire-level confounds that future
work should model explicitly.

Conclusions and future work

Distributional representations of harmonic intervals, estimated directly
from archival polyphonic recordings, encode musically meaningful informa-
tion. The combination of salience-based multi-FO estimation, GMM interval
models, and modern manifold learning reveals structure aligned with regional
metadata and supports predictive probes at non-trivial accuracy across 18 re-
gions. Future directions include (i) per-recording uncertainty quantification
for intervals; (ii) joint modeling of vertical and horizontal (melodic) structure;
(iii) cross-corpus comparisons and time-series analyses of tuning change; and
(iv) richer musicological interpretation in dialogue with regional experts, ex-
panding upon earlier Svan-focused work to a nation-scale synthesis (Shugli-
ashvili et al. 2024; Scherbaum, Miiller and Rosenzweig 2017; Scherbaum and
Miiller 2023).
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